
1

PostScript Quick
Tips: Printing Font
Samples
Copyright © 1993 by Herb
Weiner (herbw@wiskit.com).
All rights reserved. Permission
is hereby granted to use these
tips in the design and
production of any document.
However, the PostScript code
provided here may not be
incorporated into any software
product without a license from
the author.

Apple’s LaserWriter Utility
includes a Print Font Samples
function. In this month’s Quick
Tip, we’ll provide you with a
better tool. The PostScript code
described here has the following
advantages over Apple’s tool:

• Our PostScript code is
platform independent. It
can be used on a Mac, a
DOS or Windows machine,
or a Unix workstation.

• Our code is more robust.
Occasionally, corrupted
fonts may be found on a
printer’s hard disk. Apple’s
utility will abort if it
encounters a bad font,
without reporting which
font caused the problem.
Our code will print a
message and continue if any
defective fonts are found.

• Our code includes the
Version number (when
available) for all fonts. This
information can be useful
for diagnosing discrepancies
between multiple printers.

• For Multiple Master fonts,
our code displays each of
the master designs. Multiple
Master fonts with two
design axes have four master
designs; Multiple Master
fonts with three design axes
have eight master designs.

• Our code doesn’t include
the reencoded fonts
produced by earlier versions
of the LaserWriter driver on
the Mac.

%! Copyright (C) 1986-1993 Herb Weiner.
%! All rights reserved.

/Top 724 def /y Top def /Left 54 def /Bottom 72 def
/TitleHeight 740 def /Width 512 def /Middle 264 def
/vx 224 def /PageNumber 0 def /Pointsize 12 def
/Leading 18 def /myString 100 string def /pn () def
/fl 25000 array def /fi 0 def /version () def /text
 (The quick brown fox jumps over the lazy dog.) def
/Helvetica-Bold findfont dup 12 scalefont
 /TF exch def 10 scalefont /FF exch def
/Helvetica findfont 8 scalefont /BF exch def
/statusdict where {pop statusdict /printername known
 {/pn 100 string statusdict begin printername end
 def} if} if
/insert {dup length string copy fi 0 eq
 {fl exch 0 exch put} {fi 0 1 fi 1 sub {fl 1 index
 get 3 index gt {exch pop exit} {pop} ifelse} for
 fi 1 sub -1 2 index {fl exch dup 1 add exch fl
 exch get put} for fl 3 1 roll exch put} ifelse
 /fi fi 1 add def} def
/PrintTitle {TF setfont userdict /PageNumber
 PageNumber 1 add put Left 18 add TitleHeight
 moveto (Printer Font Catalog) show pn length 0 gt
 {(for \252) show pn show (\272) show} if
 PageNumber myString cvs dup stringwidth pop
 (Page) stringwidth pop add Width 18 sub exch sub
 Left add TitleHeight moveto (Page) show show
 newpath Left TitleHeight 9 sub moveto Width 0
 rlineto 0 30 rlineto Width neg 0 rlineto
 closepath stroke} bind def
/PrintPage {PrintTitle showpage userdict
 /y Top put} bind def
/newLine {y Bottom le {PrintPage} if userdict
 /y y Leading sub put} bind def
/showLine {Left y moveto show} bind def
/showSample {Middle y moveto {currentdict Pointsize
 scalefont setfont text show} stopped FontType 4 ne
 and {TF setfont (*** DEFECTIVE FONT ***) show} if
 clear} bind def
/showFont {newLine dup myString cvs FF setfont
 showLine /mySave save def {findfont dup /FontInfo
 known {dup /FontInfo get begin} if begin
 BF setfont vx y moveto version show showSample
 FontType 4 eq { {userdict /nMasters
 BlendDesignPositions length put userdict /nAxes
 BlendAxisTypes length put 0 1 nMasters 1 sub
 {userdict exch /i exch put newLine save Left
 12 add y moveto BF setfont 0 1 nAxes 1 sub
 {BlendAxisTypes 1 index get myString cvs show ()
 show BlendDesignPositions i get 1 index get exch
 BlendDesignMap exch get {dup 1 get 2 index eq
 {0 get myString cvs show () show exit} {pop}
 ifelse} forall pop} for Middle y moveto
 currentdict [1.0 nMasters 1 sub {0.0} repeat
 nMasters i roll] makeblendedfont /myFont exch
 definefont Pointsize scalefont setfont text show
 y exch PageNumber exch restore userdict exch
 /PageNumber exch put userdict exch /y exch put}
 for} stopped {clear} if} if} stopped
 cleardictstack {clear Middle y moveto TF setfont
 (*** DEFECTIVE FONT ***) show} if y PageNumber
 mySave restore /PageNumber exch def /y exch def}
 bind def
newLine TF setfont (Fonts in printer's memory)
 showLine /y y 6 sub def

2

FontDirectory {dup /FontName known
 {/FontName get 1 index eq {myString cvs insert}
 {pop} ifelse} {pop pop} ifelse} forall
 0 1 fi 1 sub {fl exch get dup showFont} for
 /fi 0 def statusdict /diskstatus known
 {statusdict /diskonline known {statusdict
 /diskonline get exec} {true} ifelse
 {PrintPage newLine TF setfont
 (Fonts on printer's disk(s)) showLine
 /y y 6 sub def (fonts/*) {dup length 6 sub 6 exch
 getinterval insert} myString filenameforall
 0 1 fi 1 sub {fl exch get dup showFont} for} if}
 if PrintPage

MinionMM 001.000 The quick brown fox jumps over the lazy dog.

Weight 345 Width 450 OpticalSize 6 The quick brown fox jumps over the lazy dog.

Weight 620 Width 450 OpticalSize 6 The quick brown fox jumps over the lazy dog.

Weight 345 Width 600 OpticalSize 6 The quick brown fox jumps over the lazy dog.

Weight 620 Width 600 OpticalSize 6 The quick brown fox jumps over the lazy dog.

Weight 345 Width 450 OpticalSize 72 The quick brown fox jumps over the lazy dog.

Weight 620 Width 450 OpticalSize 72 The quick brown fox jumps over the lazy dog.

Weight 345 Width 600 OpticalSize 72 The quick brown fox jumps over the lazy dog.

Weight 620 Width 600 OpticalSize 72 The quick brown fox jumps over the lazy dog.

The figure below illustrates an
interesting portion of the output.
Adobe’s Minion Multiple Master
font has eight master designs,
each of which is included in the
sample output. (The Minion
Multiple Master package also
includes MinionMM-It, which
has eight master designs as well.)
This output helps to demonstrate
the huge effort required to design
a three axis Multiple Master font.
The “001.000” indicates that we
are using version 1.0 of this font.

How to Use it

• Use any text editor to create
a text file containing the
PostScript code.

• Download the PostScript
code to any PostScrpt
printer to print the font
samples. If your printer has
a hard disk attached, this
program prints samples for
all fonts on the printer’s
hard disk as well as those in
your printer’s ROM.
Otherwise, this program
only prints fonts in your
printer’s memory (fonts in
ROM and fonts which have

been downloaded into your
printer’s RAM). Note that it
takes several minutes per
page to print font samples
from the printer’s hard disk.

• If you wish, you can change
the sample phrase. For
example, in place of “The
quick brown fox ...,” you
may prefer “The five boxing
wizards jump quickly,”
which covers the entire
alphabet using fewer letters.

How it Works

Apple’s LaserWriter Utility
requires a bidirectional
communication channel to the
printer. It first downloads a
PostScript program to obtain a
list of fonts from the printer. The
response is transmitted back to
the LaserWriter Utility, which
then creates a document
containing the font samples.

In contrast, our code performs all
computation and formatting on
the printer. This makes our
PostScript program somewhat
unconventional, since there is no
way to determine by examing the
program how many pages will be

produced or what fonts will be
used. In fact, our program is
useful preciesely because it is not
device independent. In general,
different printers will produce
different results.

Since the formatting is done
entirely in the printer, it is even
possible to shutdown the
computer once the code has been
completely downloaded, and the
printer will continue to print
(often many pages) until it is
finished.

The complexity of PostScript
fonts makes it nearly impossible
to completely check a font for
errors or corruption before using
it. Fortunately, the PostScript
language offers an alternative —
the stopped operator. This
operator allows us to trap errors
and recover from them after they
occur. Unfortunately, the uses of
stopped are rather limited, since
most PostScript programs can’t
simply report an error (like we
do) and continue.

Since corrupted fonts can
produce errors when we load
them using findfont, or later
when we attempt to make use of
them using show , we use stopped
to recover from errors in either
situation. Note that we don’t
make any attempt to determine
what caused the error; only that
an error did occur. We report
that the font in question is
defective, and proceed to the
next font.

